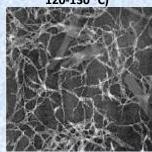

1.4TO ТАКОЕ ПЛАСТИЧНАЯ СМАЗКА 1.1 СТРУКТУРА ПЛАСТИЧНЫХ СМАЗОК

Смазка – продукт загущения базового масла специальными загустителями, с консистенцией от полужидкой до твердой; содержит функциональные добавки и присадки.

В результате загущения масла получается своего рода пространственный каркас, созданный молекулами загустителя, который удерживает в себе масло с присадками.

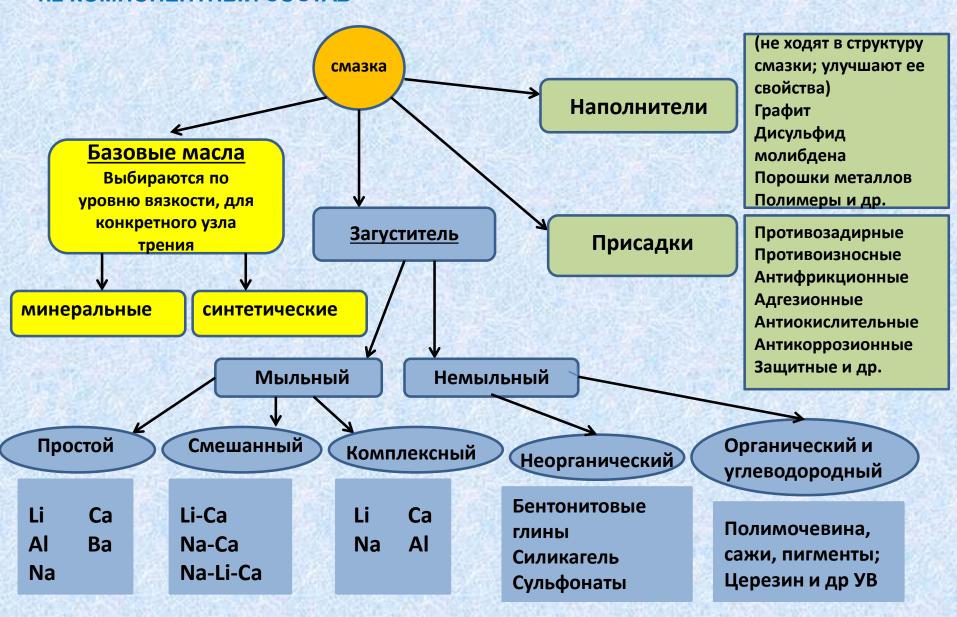


Литиевое мыло

Комплексное литиевое мыло

(Мах раб. температура — (Мах раб. температура — 150-170 $^{\circ}$ C) 120-130 $^{\circ}$ C)

Кальциевое мыло


Натриевое мыло

(Мах раб. температура – 60-80°С)

(Мах раб. температура – 100-120°C)

В зависимости от типа применяемого загустителя будет отличаться структура каркаса, что будет влиять и на свойства смазки.

1.2 КОМПОНЕНТНЫЙ СОСТАВ

2. ВЛИЯНИЕ БАЗОВОГО МАСЛА НА ЭКСПЛУАТАЦИОННЫЕ СПОСОБНОСТИ СМАЗОК

2.1 ТЕМПЕРАТУРНЫЙ ДИАПАЗОН ПРИМЕНЕНИЯ ПЛАСТИЧНЫХ СМАЗОК

2.2 ЗАВИСИМОСТЬ СКОРОСТНОГО КОЭФФИЦИЕНТА И ТЕМПЕРАТУРЫ ЭКСПЛУАТАЦИИ ПОДШИПНИКА ОТ КИНЕМАТИЧЕСКОЙ ВЯЗКОСТИ БАЗОВОГО МАСЛА

Эксплуатационная температура, °C	Скоростной коэффициент: ((внутр+внеш диаметр подшипника)/2 (мм))*об/мин	Вязкость масла при 40°C, сСт
0 - 65	До 75 000	30 – 150
	75 000 – 200 000	20 – 65
	200 000 – 400 000	15 – 45
	Выше 400 000	10 – 30
65 - 95	До 75 000	150 -240
	75 000 – 200 000	65 – 150
	200 000 – 400 000	30 – 65
	Выше 400 000	20 – 45
95 - 120	До 75 000	240 – 650
	75 000 – 200 000	150 – 450
	200 000 – 400 000	85 – 195
	Выше 400 000	65 – 150

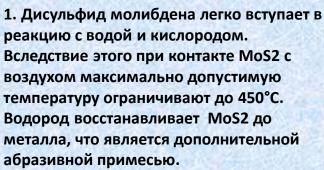
3. ВЛИЯНИЕ ЗАГУСТИТЕЛЯ НА ЭКСПЛУАТАЦИОННЫЕ СПОСОБНОСТИ СМАЗКИ

3.1 КЛАССИФИКАЦИЯ ПЛАСТИЧНЫХ СМАЗОК ПО NLGI

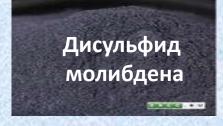
Пенетрация при 25°C, мм/10	Класс NLGI	Класса консистенции (ГОСТ 23258)	Консистенция	Область применения
445-475	000		Очень мягкая — аналогичная вязкому маслу	зубчатые передачи (закр.) / центросмазка
400-430	00	00		зубчатые передачи (закр.) / центросмазка
355-385	0	0	Мягкая - полужидкая	зубчатые передачи (закр.) / центросмазка
310-340	1	1	Мягкая	Зуб. передачи (закр.) /под. скольжения/ под. качения/ центросмазка
265-295	2	2	Мягкая вазелиноподобная	под. скольжения/ под. качения / линейные направляющие/ центросмазка
220-250	3	3	Полутвердая	под. скольжения/ под. качения (скоростные)
175-205	4	4	твердая	под. качения (скоростные)/ для водяных насосов (уплот.)
130-160	5	5	Очень твердая	зубчатые передачи (откр.)/ для водяных насосов (уплот.)
85-115	6	6	Очень твердая	зубчатые передачи (откр.)/ для водяных насосов (уплот.)

3.2 ОСНОВНЫЕ СВОЙСТВА СМАЗКИ С РАЗЛИЧНЫМИ ЗАГУСТИТЕЛЯМИ

Сдвиг / механическая стабильность


ТИП ЗАГУСТИТЕЛЯ	Т°С точки каплепадения	Водостойкость	Сдвиг / механическая стабильность
Са-мыло	135-145	Отличная	Хорошая/ отличная
Na-мыло	160-180	Удовлетворит.	Удовлетв.
Li-мыло (>50% рынка)	175-205	Хорошая	Хорошая/ отличная
Al-мыло	110	Хорошая	Плохая
Ca-complex	>260	Отличная	Удовлетв./ хорошая
Li-complex	>260	Хорошая	Хорошая/ отличная
Al-complex	>260	Хорошая	Хорошая/ отличная
Bentonite (глина)	>260	Хорошая	Удовлетв./ хорошая
Polyurea (мочевина)	240	Хорошая	Плохая/ хорошая

4. ВЛИЯНИЕ НАПОЛНИТЕЛЯ НА ЭКСПЛУАТАЦИОННЫЕ СПОСОБНОСТИ СМАЗОК


4.1 ОСНОВНЫЕ СВОЙСТВА СМАЗКИ С РАЗЛИЧНЫМИ НАПОЛНИТЕЛЯМИ

1. При повышении температуры применения увеличивается коэффициент трения.

- 1. При контакте с воздухом и водой улучшает свои свойства
- 2. Предельная рабочая температура 600°C
- 1. При повышении температуры уменьшается коэффициент трения

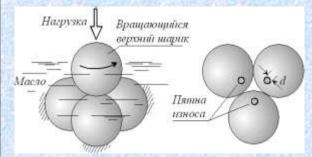
В качестве наполнителей широко используют оксиды цинка, титана и меди (I), порошки меди, свинца, алюминия, олова, бронзы и латуни, которые обычно замешивают в готовую смазку в количестве от 1 до 30%. Такие наполнители применяют преимущественно в резьбовых, уплотнительных, а также антифрикционных смазках, используемых в тяжело нагруженных узлах трения скольжения (различного вида шарниры, некоторые зубчатые и цепные передачи, винтовые пары и др.). Предельная рабочая температура применения меди 1100°С

4.1.1 ПОКАЗАТЕЛИ, ОПРЕДЕЛЯЕМЫЕ НА ЧЕТЫРЕХЩАРИКОВОЙ МАШИНЕ ТРЕНИЯ

<u>НАГРУЗКА СВАРИВАНИЯ</u> на 4-х шариковой машине характеризует антизадирные (EP-Extreme Pressure) свойства пластичной смазки.

<u>КРИТИЧЕСКАЯ НАГРУЗКА</u> характеризует способность смазочного материала предотвращать заедание трущихся поверхностей и предел несущей способности смазочного материала.

МЕТОД ИСПЫТАНИЯ: Три стальных шарика помещаются в чашку и смазываются исследуемой смазкой, а четвёртый устанавливается сверху между ними; этот шарик вращается относительно трех шариков с заданной скоростью (1500 об/с). Нагрузка увеличивается с определённым шагом до тех пор, пока вращающийся шарик не приварится к трем неподвижным шарикам. Данное испытание позволяет определить максимальную нагрузку, при которой происходит разрыв смазывающей пленки, что ведет к задиру поверхности.



Диаметр пятна износа — показатель противоизносных свойств смазочных материалов. Определяется на 4-х шариковой машине (ЧШМ). Тест проводится в течение 60 минут, при скорости 1500 об./мин. и постоянной нагрузке.

Dи (196 H, 20°C), мм	Противоизносные свойства
Dи ≤ 0,3	Очень высокие
Dи = 0,310,4	Высокие
Dи = 0,400,50	Хорошие
Dи = 0,510,60	Средние
Dи ≥ 0,6	Низкие

4.2 СРАВНЕНИЕ ТРИБОЛОГИЧЕСКИХ ХАРАКТЕРИСТИК, ОПРЕДЕЛЯЕМЫХ НА ЧШМ, СМАЗОК С РАЗЛИЧНЫМИ НАПОЛНИТЕЛЯМИ

Смазка на основе литиевого загустителя

Смазка на основе литиевого загустителя+ присадка

Без наполнителей

Рк (критическая	Рк (критическая	Рс (нагрузка	Диаметр пятна
нагрузка), Н	нагрузка), Н	сваривания), Н	износа, мм
380	650	1450	0,69

Рк (критическая нагрузка), Н	Рк (критическая нагрузка), Н	Рс (нагрузка сваривания), Н	Диаметр пятна износа, мм
840	850	1800	0,48
650	650	1450	0,47

2% MoS2

10% Графит С-1

Pc смазки с MoS2 > Pc смазки с Графит C-1

5. КРИТЕРИИ ПОДБОРА СМАЗОК

- ❖ Условия эксплуатации (тип узла трения, рабочие температуры, нагрузки, скорость, влажность и т.д.)
- ❖ Соответствие загустителя области применения смазки
- Способ подачи смазки
- ❖ Совместимость смазок различных типов

Рекомендации:

- ❖ Нежелательно смешивать смазки с различными загустителями
- ❖ Обеспечить максимальную чистоту узла трения при замене смазки

- Чрезмерная смазка обычное явление при смазывании, что приводит к сильному трению, дополнительному нагреву и может стать причиной повреждения уплотнения подшипника.
- Недостаточная смазка появляется в процессе длительных перерывов между интервалами смазывания, что приводит к чрезмерному трению и преждевременному износу.
- Длительные перерывы между сериями смазки приводят попаданию большого количества грязи в узел трения, что способствует дополнительному износу.
- •Многие точки можно смазывать только при выключенном агрегате => простой и снижение производительности .

6. РЕКОМЕНДАЦИИ ПО НОРМЕ НАБИВКИ СМАЗОК В ПОДШИПНИКИ

ПОДШИПНИКИ КАЧЕНИЯ.

При набивке пластичного смазочного материала в подшипники валов, вращающихся с частотой до 1500 об/мин, заполняют 2/3 свободного объема подшипника, а при скоростях свыше 1500 об/мин — 1/3 ... 1/2 объема.

